

Majid Sadegh project ManagerITA
AITES Chuzhou-Nanjing $7^{\text {th }}$ November 2018
M.Sadeghi + A.Golshani

$\overline{0}$

Tehran

- Population: about 14 millions people
- The second- largest metropolitan area in the Middle east. AWARDS

AITES Chuzhou-Nanjing $7^{\text {th }}$ November 2018

- To increase Traffic capacity from east to west in North of Tehran (Due to locating number of main north to east routes in this area)

Arash-Esfandiar-Niayesh Tunnel

$\overline{0}$

ITA TUNNELLING
AWARDS 2018

Project specifications:

- Tunnel length: 1451m
- Ramp length: 1068m
- Overburden: 3 to $\mathbf{1 4 m}$
- Excavation width: 6.90 to 20 m

ITA TUNNELLING

AWARDS 2018

Project specifications:

- Multiple cross sections
- One Bifurcation (1.5 Lane+2 Lane)
- One Electrical substation tunnel

ITA TUNNELLING
AWARDS 2018

- Geological long section

Mixture of cemented gravel and sand with clay and silt

LEGEND:

ITA
AITES Chuzhou-Nanjing $7^{\text {th }}$ November 2018

ITA TUNNELLING
AWARDS 2018

- Multiple Cross sections:

1- Modares Tunnel (Two-story tunnel) Height: 13m
Width: 12.2 m

ITA
AITES Chuzhou-Nanjing $7^{\text {th }}$ November 2018
M.Sadeghi + A.Golshani

8/40

ITA TUNNELLING
AWARDS 2018

- Multiple Cross sections:

2- Two traffic lane Tunnel Height: 8.7 m
Width: 11m

ITA TUNNELLING
AWARDS 2018

- Multiple Cross sections:

3-2.5 traffic lane Tunnel Height: 11.9m
Width: 14.4 m

$\bar{\sigma}$

ITA TUNNELLING
AWARDS 2018

- Multiple Cross sections:

4-1.5 traffic lane Tunnel Height: 5.5m
Width: 6.9m

ITA TUNNELLING
AWARDS 2018

- Multiple Cross sections:

5- Three traffic lane Tunnel Height: 11.3m
Width: 18m

- Multiple Cross sections:

6- Valiasr Tunnel (Twin tunnel) Height: 8m
Width: 18.3m

ITA TUNNELLING
AWARDS 2018

- Multiple Cross sections:

7- Enlarged 3.5 traffic lane Tunnel Height: 11.6 m
Width: 20m

M.Sadeghi + A.Golshani

ITA TUNNELLING

AWARDS 2018

Modares Tunnel:

- Two-story tunnel with the length of $52.3 \mathrm{~m}, 12.8 \mathrm{~m}$ width and 13 m height and the overburden of 3 m
- Under passing Modares Highway
- Ground settlement restricted to allowable limit

$\bar{\sigma}$
ITA
AITES Chuzhou-Nanjing $7^{\text {th }}$ November 2018

- Modares Tunnel: a rather square section (two-story section)

Combination of different supporting approach including NATM, Soil Improvement (fore-poling, micropile and nailing) simultaneously in order to reach a safe construction

$\bar{\sigma}$

ITA TUNNELLING
AWARDS 2018

- Modares Tunnel: a rather square section (two-story section)

Combination of different supporting approach including NATM, Soil Improvement (fore-poling, micropile and nailing) simultaneously in order to reach a safe construction

$\bar{\sigma}$

ITA TUNNELLING
AWARDS 2018

- Modares Tunnel

Construction stages of modares tunnel

Initial lining supporting elements specifications

ITA TUNNELLING
AWARDS 2018

- Modares Tunnel:

Five numerical models with different extra supporting system were simulated for Modares Tunnel excavation process;

Model NO.	Extra Supporting Systems		
	Fore pole	Micropile	nail
2	-	-	-
3	\checkmark	-	-
4	-	\checkmark	-
5	-	-	\checkmark

Modares Tunnel

- Model No. 1 (NATM method, no extra supporting system)

Vertical displacements (Uy)
Extreme Uy $-56.42^{*} 10^{-3} \mathrm{~m}$

Allowable surface settlement (mm)	25.4	
Maximum total vertical displacement (mm)	56.42	
Maximum surface settlement (mm)	51.35	\rightarrow More than allowable settlement

Modares Tunnel

- Model No. 2 (NATM method with Fore poles) 60 fore-poles in two rows with length of 6.00 m

Modares Tunnel

- Model No. 2 (NATM method with Fore poles)

Vertical displacements (Uy)
Extreme Uy $-56.42^{* 10} 10^{-3} \mathrm{~m}$

Allowable surface settlement (mm)	25.4	
Maximum total vertical displacement (mm)	56.42	
Maximum surface settlement (mm)	51.35	\rightarrow More than allowable settlement

Modares Tunnel

- Model No. 3 (NATM method with Micro-piles)

Six micropiles $\emptyset 32$ with vertical deviation 15°

- Four micro-piles with the length of three meters
- Two micro-piles with the length of six meters

Modares Tunnel

- Model No. 3 (NATM method with Micro-piles)

Vertical displacements (Uy)
Extreme Uy - $44.05^{*} 10^{-3} \mathrm{~m}$

Allowable surface settlement (mm)	25.4
Maximum total vertical displacement (mm)	44.05
Maximum surface settlement (mm)	$40.41 \rightarrow$ More than allowable settlement

Modares Tunnel

- Model No. 4 (NATM method with Nails)

Four nails IBO R32S with the length of 6 meters

- Two horizontal nails
- Two nails with horizontal deviation of 15°

$\overline{\mathrm{O}}$

Modares Tunnel

- Model No. 4 (NATM method with Nails)

Vertical displacements (Uy)
Extreme Uy $-50.29^{*} 10^{-3} \mathrm{~m}$

Allowable surface settlement (mm)	25.4	
Maximum total vertical displacement (mm)	50.29	
Maximum surface settlement (mm)	45.79	\rightarrow More than allowable settlement

AITES

Modares Tunnel

- Model No. 5 (NATM method with Fore-poling, Micro-piles and Nails)

Vertical displacements (Uy)
Extreme Uy $-29.16^{*} 10^{-3} \mathrm{~m}$

Allowable surface settlement (mm)	25.4
Maximum Total vertical displacement (mm)	29.16
Maximum surface settlement (mm)	$24.90 \rightarrow$ Less than allowable settlement

Therefore for construction of Modares tunnel (with rather square cross section), NATM method with Fore-poling, Micro-piles and Nails were used.

Modares Tunnel

Ground settlement \& Maximum bending moment of the models

Model NO.	cases			Surface Displacement		Initial Lining Maximum Bending Moment	
	Fore pole	Micro pile	nail	Surface vertical disp. (mm)	Reduction percentage compared to NO. 1	Maximum Bending Moment (kN.m/m)	Reduction percentage for compared to NO. 1
1	-	-	-	-51.35	-	165.39	-
2	\checkmark	-	-	-39.03	24\%	116.25	29.7\%
3	-	\checkmark	-	-40.41	21\%	158.34	4.26\%
4	-	-	\checkmark	-45.79	10.8\%	148.56	10.2\%
5	\checkmark	\checkmark	\checkmark	-24.90	48.5\%	89.95	45.6\%

$\overline{0}$

Modares Tunnel

- Monitoring \& Numerical simulation ground settlement data comparison Difference between results might be due to better soil condition at this part of project comparing to the information obtained from geotechnical studies

Modares Tunnel

Internal forces induced in final lining

- Quasi-static analysis performed based on Tunneling and underground space technology report of "Hashhash". The shear stress mentioned in following table applied to MDE and ODE models.

Seismic risk level	Return period (year)	Horizontal acceleration (g)	Shear stress $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
ODE (probability of exeedence $50 \%)$	144	0.24	115.2
MDE(probability of exeedence $5 \%)$	3283	0.65	173

Static loads			Dynamic loads (ODE)		
Axial forces Extreme axial force $-667.09 \mathrm{kN} / \mathrm{m}$	Shear forces Extreme in plane shear force $-267.01 \mathrm{kN} / \mathrm{m}$	Bending moments Extreme bending moment $583.23 \mathrm{kNm} / \mathrm{m}$	Axial forces Extreme axial force $-861.20 \mathrm{kN} / \mathrm{m}$	Shear forces Extreme in plane shear force $467.45 \mathrm{kN} / \mathrm{m}$	Bending moments Extreme bending moment $-347.59 \mathrm{kNm} / \mathrm{m}$

ITA TUNNELLING

AWARDS 2018

Valiasr Tunnel:

- Twin tunnel with the length of $50 \mathrm{~m}, 18.3 \mathrm{~m}$ width and 8 m height and the overburden of 12 m ,
- Under passing Valiasr Street
- Ground settlement restricted to allowable limit

$\bar{\sigma}$
ITA
AITES Chuzhou-Nanjing $7^{\text {th }}$ November 2018

ITA TUNNELLING
 AWARDS 2018

- Valiasr Tunnel: a unique rather flat cross section (Twin tunnel) under Valiasr Street.
- Existence of some underground obstacles adjacent to the tunnel

Valiasr Street

$\overline{0}$

- Valiasr Tunnel: a unique rather flat cross section under Valiasr Street. Combination of NATM, nailing and final lining of the left tube in order to reach a safe construction

$\overline{\mathrm{O}}$

ITA TUNNELLING
AWARDS 2018

- Valiasr Tunnel:

Three numerical models were simulated for Valiasr Tunnel excavation process;

Model NO.	Extra Supporting Systems	
	Micropile	Final lining of the left tube before complete excavation of right tube
1	-	-
2	-	\checkmark
3	\checkmark	\checkmark

Valiasr Tunnel

Stages of Construction \& Support specifications

$\overline{\mathrm{O}}$

Valiasr Tunnel

- Model No. 1 (NATM method, no extra supporting system)

Vertical displacements (Uy)
Extreme Uy - $63.61^{*} 10^{-3} \mathrm{~m}$

Allowable surface settlement (mm) 25.4

Maximum total vertical displacement (mm) 63.6
More than allowable settlement \rightarrow Maximum surface settlement (mm)51.3

Valiasr Tunnel

- Model No. 2 (NATM method with final lining of the left tube before complete excavation of right tube)

Allowable surface settlement (mm)	25.4
Maximum total vertical displacement (mm)	43.5

More than allowable settlement \rightarrow Maximum surface settlement (mm) 40.0

Valiasr Tunnel

- Model No. 3 (NATM method with final lining of the left tube before complete excavation of right tube and Micro-piles)

Therefore for construction of Valiasr tunnel (with rather flat cross section), NATM method with final lining of the left tube before complete excavation of right tube and Micro-piles were used.

$\bar{\sigma}$

Valiasr Tunnel

- Comparing Model 3 numerical results with Monitoring

Good agreement between monitoring data and numerical results for different stages of excavation

Conclusions

- Existence of several section transitions and bifurcation owing to the compulsion for unifying various level and non-levels traffic routs,
- Combination of different supporting approach including NATM, soil improvement (fore-poling, micro-pile, grouting, nailing) and partially final lining of the cross section before complete excavation simultaneously in order to reach a safe construction for a rather flat cross section (i.e., Valiasr tunnel) and a rather square cross section (i.e., Modares tunnel) which are far from rounded sections (rounded sections initiate confinement forces and limit internal forces in the lining, also allows the smooth flow of stress into the ground around the tunnel and causes less displacements)
- No disruption and acquisition of surface ground especially during construction of two main parts of the project i.e., Modares tunnel and Valiasr tunnel

